""

.
  1. Aarts E., Korst J. Simulated annealing and Boltzmann machines: A stochastic approach to combinatorial optimization and neural computing. Chichester: John Wiley Sons.
  2. Ackley D.H. A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic Publishers, Boston, MA, 1987.
  3. Ackley D.H. An empirical study of bit vector function optimization. In L. Davis, editor, Genetic Algorithms and Simulated Annealing, chapter 13, pages 170--204. Pitman, 1987.
  4. Adachi N., Matsuo K. Ecological dynamics under different selection rules in distributed and iterated prisoner's dilemma game. Lecture Notes in Computer Science: Parallel Problem Solving from Nature, 496, 388--394.
  5. Aho A.V., Hopcroft J.E., Ullman J.D. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.
  6. Altenberg L. The schema theorem and Price's theorem. In L.D. Whitley and M.D. Vose, editors, Foundations of Genetic Algorithms, volume 3, San Mateo, CA, 1995. Morgan Kaufmann. (To appear).
  7. Amarel S. On representations of problems of reasoning about actions. In D. Michie, editor, Machine Intelligence, volume 3, pages 131--171. Edinburgh University Press, 1968.
  8. Amitrano C., Peliti L., Saber M. A spin-glass model of evolution. In A. Perelson and S.A. Kauffman, editors, Molecular Evolution on Rugged Landscapes: Proteins, RNA and the Immune System, pages 27--38, Redwood City, CA, Dec 1987. Santa Fe Institute Studies in the Sciences of Complexity, volume IX, Addison-Wesley.
  9. Axelrod R. The evolution of strategies in the iterated prisoner's dilemma. In L. Davis, editor, Genetic Algorithms and Simulated Annealing, chapter 3, pages 32--41. Pitman, 1987.
  10. Bagchi S., Uckun S., Miyabe Y., Kawamura K. Exploring problem-specific recombination operators for job shop scheduling. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 10--17. Morgan Kaufmann, 1991.
  11. Bailey N.T. Statistical Methods in Biology. Cambridge University Press, Cambridge, UK, 3rd edition, 1995
  12. Baker E. Evolving line drawings. Proceedings of the Fifth International Conference on Genetic Algorithms, 627.
  13. Baker J.E. Adaptive selection methods for genetic algorithms. In J.J. Grefenstette, editor, Pro- ceedings of the First International Conference on Genetic Algorithms, pages 101--111. Lawrence Erlbaum Associates, 1985.
  14. Baker J.E. Reducing bias and inefficiency in the selection algorithm. In J.J. Grefenstette, editor, Proceedings of the Second International Conference on Genetic Algorithms, pages 14--21. Lawrence Erlbaum Associates, 1987.
  15. Banerji R.B. Theory of problem Solving: An Approach to Artificial Intelligence. Modern Analytic and Computational Methods in Science and Mathematics. American Elsevier, New York, NY, 1969.
  16. Banzhaf W. Genetic programming for pedestrians. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, page 628, San Mateo, CA, 1993. Morgan Kaufmann.
  17. Battle D. L., Vose M.D. Isomorphisms of genetic algorithms. In G.J.E. Rawlins, editor, Foundations of Genetic Algorithms, volume 1, pages 242--251, San Mateo, CA, 1991. Morgan Kaufmann.
  18. Bauer R.J. Jr. Genetic algorithms and investment strategies. New York: John Wiley Sons.
  19. Bean J.C. Genetics and random keys for sequencing and optimization. ORSA Journal on Computing, 6:154--160, 1994.
  20. Beasley D., Bull D. R., Martin R. R. A sequential niche technique for multimodal function optimization. Evolutionary Computation, 1(2), 101--125.
  21. Bellman R. Dynamic Programming. Princeton University Press, 1957.
  22. Bethke A.D. Genetic algorithms as function optimizers (Doctoral dissertation, University of Michigan). Dissertation Abstracts International, 41(9), 3503B. (University Microfilms No. 8106101)
  23. Boese K.D. Cost versus distance in the traveling salesman problem. Unpublished preliminary report., 1995.
  24. Boese K.D., Kahng A.B., Muddu S. A new adaptive multi-start technique for combinatorial global optimizations. Operations Research Letters, 16(2):101-113, September 1994.
  25. Booker L.B. Improving search in genetic algorithms. In L. Davis, editor, Genetic Algorithms and Simulated Annealing, chapter 5, pages 61--73. Pitman, 1987.
  26. Booker L.B. Improving the performance of genetic algorithms in classifier systems. Proceedings of an International Conference on Genetic Algorithms and Their Applications, 80--92.
  27. Booker L.B. Intelligent behavior as an adaptation to the task environment (Doctoral dissertation, University of Michigan). Dissertation Abstracts International, 43(2), 469B. (University Microfilms No. 8214966)
  28. Brady A.H. The conjectured highest scoring machines for Rado's oe(k) for the value k = 4. IEEE Transactions on Electronic Computers, EC-15:802, 1966.
  29. Brady A.H. The determination of the value of Rado's noncomputable function oe(k) for four-state Turing machines. Mathematics of Computation, 40(162):647--665, April 1983.
  30. Bridges C.L., Goldberg D.E. An analysis of reproduction and crossover in a binary-coded genetic algorithm. Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, 9--13.
  31. Brindle A. Genetic algorithms for function optimization. Unpublished doctoral dissertation, University of Alberta, Edmonton.
  32. Bunday B.D. Basic Optimisation methods. Edward Arnold, 1984.
  33. Back T. Generalized convergence models for tournament and (mu, lambda) selection. Proceedings of the Sixth International Conference on Genetic Algorithms, pages 2--8, Pittsburg, PA, 1995. Morgan Kaufmann.
  34. Back T. Optimal mutation rates in genetic search. Proceedings of the Fifth International Conference on Genetic Algorithms, 2--8.
  35. Back T. Selective pressure in evolutionary algorithms: A characterization of selection mechanisms. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 57--62.
  36. Back T. The interaction of mutation rate selection and self-adaptation within a genetic algorithm. In R. Manner B. Manderick (Eds.), Parallel problem solving from nature, 2 (pp. 85--94). Amsterdam: Elsevier.
  37. Back T., Hoffmeister F., Schwefel H.-P. A survey of evolution strategies. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 2--9, San Mateo, CA, 1991. Morgan Kaufmann.
  38. Back T., Schwefel H.-P. An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation, 1(1):1--24, 1993.
  39. Caldwell C., Johnston V.S. Tracking a criminal suspect through ``face-space'' with a genetic algorithm. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Con- ference on Genetic Algorithms, pages 416--421. Morgan Kaufmann, 1991.
  40. Caruana R.A., Schaffer J.D. Representation and hidden bias: Gray vs. binary coding for genetic algorithms. In Fifth International Conference on Machine Learning, pages 153--161, Los Altos, CA, June 12--14 1988. Morgan Kaufmann.
  41. Cavicchio D.J., Jr. Adaptive search using simulated evolution. Unpublished doctoral dissertation, University of Michigan, Ann Arbor.
  42. Cedeno W., Vemuri V. Dynamic multimodal function optimization using genetic algorithms. Proceedings of the XVIII Latin-American Informatics Conference, 292--301.
  43. Chambers R. Vestiges of the Natural History of Creation. Chicago University Press, Chicago IL, 1994.
  44. Chi P-C. Genetic search with proportion estimates. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 92--97. Morgan Kaufmann, 1989.
  45. Cobb H.G. An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments (NRL Memorandum Report No. 6760). Washington, DC: Naval Research Laboratory.
  46. Cobb H.G., Grefenstette J.J. Genetic algorithms for tracking changing environments. Proceedings of the Fifth International Conference on Genetic Algorithms, 523--530. Cohoon, J.P., Hegde, S.U., Martin, W.N., Richards, D. Punctuated equilibria: A parallel genetic algorithm. Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, 148--154.
  47. Cohoon J.P., Martin W.N., Richards D.S. A multi-population genetic algorithm for solving the K-partition problem on hyper-cubes. Proceedings of the Fourth International Conference on Genetic Algorithms, 244--248.
  48. Collins R.J., Jefferson D. R. Selection in massively parallel genetic algorithms. Proceedings of the Fourth International Conference on Genetic Algorithms, 249--256. Cook, L. M. Genetic and ecological diversity: The sport of nature. London: Chapman Hall.
  49. Cook S.A. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing, pages 151--158, New York, 1971. Association for Computing Machinery.
  50. Cramer N.L. A representation for the adaptive generation of simple sequential programs. In J.J. Grefenstette, editor, Proceedings of the First International Conference on Genetic Algorithms, pages 183--187. Lawrence Erlbaum Associates, 1985.
  51. Culberson J.C. Genetic invariance: A new paradigm for genetic algorithm design (Technical Report No. TR92-02). Edmonton: University of Alberta, Department of Computing Science.
  52. Culberson J.C. Mutation-crossover isomorphisms and the construction of discriminating functions. Evolutionary Computation, 2(3):279--311, 1995.
  53. Culberson J.C., Rawlins G.J.E. Genetic algorithms as function optimizers. Unpublished manuscript., December 1992.
  54. Das R., Whitley L.D. The only challenging problems are deceptive: Global search by solving order-1 hyperplanes. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 166--173, San Mateo, CA, 1991. Morgan Kaufmann.
  55. Dasgupta D., McGregor D. R. Nonstationary function optimization using the structured genetic algorithm. In R. Manner B. Manderick (Eds.), Parallel problem solving from nature, 2 (pp. 145--154). Amsterdam: Elsevier.
  56. Davidor Y. A. naturally occurring niche species phenomenon: The model and first results. Proceedings of the Fourth International Conference on Genetic Algorithms, 257--263.
  57. Davidor Y. Epistasis variance: A viewpoint on GA-hardness. In G.J.E. Rawlins, editor, Foundations of Genetic Algorithms, volume 1, pages 23--35, San Mateo, CA, 1991. Morgan Kaufmann.
  58. Davidor Y., Yamada T., Nakano R. The ECOlogical framework II: Improving GA performance at virtually zero cost. Proceedings of the Fifth International Conference on Genetic Algorithms, 171--176.
  59. Davis L. (Ed.). Handbook of genetic algorithms. New York: Van Nostrand Reinhold.
  60. Davis L. Adapting operator probabilities in genetic algorithms. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 61--69. Morgan Kaufmann, 1989.
  61. Davis L. Applying adaptive algorithms to epistatic domains. In 9th Int. Joint Conf. on AI, pages 162--164, 1985.
  62. Davis L. Bit climbing, representational bias and test suite design. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 18--23, San Mateo, CA, 1991. Morgan Kaufmann.
  63. Davis L. Genetic Algorithms and Simulated Annealing. Pitman, 1987.
  64. Davis L. Genetic algorithms for optimization: Three case studies. In J. M. Zurada, R.J. Marks II, C.J. Robinson (Eds.), Computational intelligence: Imitating life (pp. 416--426). New York: IEEE Press.
  65. Davis L. Job shop scheduling with genetic algorithms. In J.J. Grefenstette, editor, Proceedings of the First International Conference on Genetic Algorithms, pages 136--140. Lawrence Erlbaum Associates, 1985.
  66. Davis L., Coombs S. Genetic algorithms and communication link speed design: theoretical considerations. In J.J. Grefenstette, editor, Proceedings of the Second International Conference on Genetic Algorithms, pages 252--256. Lawrence Erlbaum Associates, 1987.
  67. Davis L., Steenstrup M. Genetic algorithms and simulated annealing: An overview. In L. Davis, editor, Genetic Algorithms and Simulated Annealing, pages 1--11. Pitman (Morgan Kaufmann), London, 1987.
  68. Davis T.E., Principe J.C. A Markov chain framework for the simple genetic algorithm. Evolutionary Computation 1(3), 269--288. Deb, K. Genetic algorithms in multimodal function optimization (Masters thesis and TCGA Report No. 89002). Tuscaloosa: University of Alabama, The Clearinghouse for Genetic Algorithms.
  69. Davis T.E., Principe J.C. A simulated annealing like convergence theory for the simple genetic algorithm. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 174--181, San Mateo, CA, 1991. Morgan Kaufmann.
  70. De Jong K.A. (1975). An analysis of the behavior of a class of genetic adaptive systems (Doctoral dissertation, University of Michigan). Dissertation Abstracts International, 36(10), 5140B. (University Microfilms No. 76-9381)
  71. De Jong K.A. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan, 1975. Dissertation Abstracts International 36(10), 5410B. (University Microfilms No. 76--9381).
  72. De Jong K.A. Genetic algorithms are NOT function optimizers. In L.D. Whitley, editor, Foundations of Genetic Algorithms, volume 2, pages 5--17, San Mateo, CA, 1993. Morgan Kaufmann.
  73. De Jong K.A. Genetic algorithms; A 10 year perspective. In J.J. Grefenstette, editor, Proceedings of an International Conference on Genetic Algorithms and their Applications, pages 169--177, Hillsdale, NJ, 24--26 July 1985. Carnegie Mellon University, Lawrence Erlbaum.
  74. De Jong K.A., Spears W.M., Gordon D.F. Using Markov chains to analyze GAFOs. In L.D. Whitley and M.D. Vose, editors, Foundations of Genetic Algorithms, volume 3, San Mateo, CA, 1995. Morgan Kaufmann. (To appear).
  75. DeJong K. Adaptive system design: a genetic approach. IEE Trans SMC, 10:566--574, 1980.
  76. DeJong K. The Analysis and behaviour of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan, 1975.
  77. DeJong K., Spears W.M. Using genetic algorithms to solve NP-complete problems. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 124--132. Morgan Kaufmann, 1989.
  78. Deb K. Binary and floating-point function optimization using messy genetic algorithms (Doctoral dissertation, University of Alabama). Dissertation Abstracts International, 52(5), 2658B.
  79. Deb K., Goldberg D.E. An investigation of niche and species formation in genetic function optimization. Proceedings of the Third International Conference on Genetic Algorithms, 42--50.
  80. Deb K., Goldberg D.E. Analyzing deception in trap functions. In L.D. Whitley, editor, Foundations of Genetic Algorithms, volume 2, pages 93--108, San Mateo, CA, 1993. Morgan Kaufmann.
  81. Deb K., Goldberg D.E. Sufficient conditions for deceptive and easy binary functions. Technical report, University of Illinois, Urbana-Champaign, 1992. IlliGAL Report No 92001. Available via ftp from gal4.ge.uiuc.edu in pub/papers/IlliGALs/92001.ps.Z.
  82. Deb K., Horn J., Goldberg D.E. Multimodal deceptive functions. Complex Systems, 7(2), 131--153.
  83. Desmond A. Moore J. Darwin. Penguin, London, 1992.
  84. Doran J. New developments of the graph traverser. In E. Dale and D. Michie, editors, Machine Intelligence, volume 2, pages 119--135, New York, 1967. American Elsevier.
  85. Doran J., Michie D. Experiments with the graph traverser program. Proceedings of the Royal Society of London (A), 294:235--259, 1966.
  86. Dozier G., Bowen J., Bahler D. Solving small and large scale constraint satisfaction problems using a heuristic-based microgenetic algorithm. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 306--311.
  87. Dzubera J., Whitley L.D. Advanced correlation analysis of operators for the traveling salesman problem. In Y. Davidor, H.-P. Schwefel, and R. Manner, editors, Parallel Problem Solving From Nature -- PPSN III, volume 866 of Lecture Notes in Computer Science, pages 68--77, Berlin, 1994. Springer-Verlag.
  88. Eldredge N. Macroevolutionary Dynamics: Species, Niches and Adaptive Peaks. McGraw-Hill, 1989.
  89. Elketroussi M., Fan.D. GADELO: A multi-population genetic algorithm based on dynamic exploration of local optima. Proceedings of the Fifth International Conference on Genetic Algorithms, 633.
  90. Elo S. A parallel genetic algorithm on the CM-2 for multi-modal optimization. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 818--822.
  91. Ernst G. W., Newell A. GPS:A case Study in Generality and Problem Solving. Academic Press, New York, 1969.
  92. Eshelman L.J. The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. In G.J.E. Rawlins (Ed.), Foundations of genetic algorithms (pp. 265--283). San Mateo: Morgan Kaufmann.
  93. Eshelman L.J., Caruana R.A, Schaffer J.D. Biases in the crossover landscape. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 10--19, San Mateo, CA, June 4--7 1989. Morgan Kaufmann.
  94. Eshelman L.J., Schaffer J.D. Crossover's niche. In S. Forrest, editor, Genetic Algorithms: Proceedings of the Fifth International Conference (ICGA 1993), pages 9--14, San Mateo, CA, 1993. Morgan Kaufmann.
  95. Eshelman L.J., Schaffer J.D. Preventing premature convergence in genetic algorithms by preventing incest. Proceedings of the Fourth International Conference on Genetic Algorithms, 115--122.
  96. Eshelman L.J., Schaffer J.D. Real-coded genetic algorithms and intervalschemata. In L.D. Whitley (Ed.), Foundations of genetic algorithms, 2 (pp. 187--202). San Mateo: Morgan Kaufmann.
  97. Fogarty T.C. Rule-based optimization of combustion in multiple burner furnaces and boiler plants. Engineering Applications of Artificial Intelligence, 1(3):203--209, 1988.
  98. Fogel D.B. An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks, 5(1):3-14, Jan 1994. Special Issue on Evolutionary Computation.
  99. Fogel D.B. Applying evolutionary programming to selected control problems. Computers Math. Applic., 27(11):89--104, 1994.
  100. Fogel D.B., Atmar J.W. Comparing genetic operators with gaussian mutations in simulated evolutionary processes using linear systems. Biological Cybernetics, 63:111--114, 1990.
  101. Fogel D.B., Stayton L.C. On the effectiveness of crossover in simulated evolutionary optimization. BioSystems, 32:171--182, 1994.
  102. Fogel L.J., Owens A.J., Walsh M.J. Artificial Intelligence Through Simulated Evolution. John Wiley and Sons, New York, 1966.
  103. Fonseca C. M., Fleming P.J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. Proceedings of the Fifth International Conference on Genetic Algorithms, 416--423.
  104. Fontana W., Stadler P.F, Bornberg-Bauer E.G, Griesmacher T., Hofacker I., Tacker M., Tarazona P., Weinberger E.D, Schuster P. RNA folding and combinatory landscapes. Physical Review E, 47(3):2083--2099, 1993.
  105. Forrest S. (Ed.). Proceedings of the Fifth International Conference on Genetic Algorithms. San Mateo: Morgan Kaufmann.
  106. Forrest S. Genetic algorithms: Principles of adaptation applied to computation. Science, 261:872--878, Aug. 13 1993.
  107. Forrest S. Genetic algorithms. In A. B. Tucker, editor, CRC Handbook of Computer Science and Engineering. CRC Press, Boca Raton, FL, in press.
  108. Forrest S., Jarvonik B., Smith R.E., Perelson A.S. Using genetic algorithms to explore pattern recognition in the immune system. Evolutionary Computation, 1(3), 191--211.
  109. Forrest S., Mayer-Kress G. Genetic algorithms, nonlinear dynamical systems, and models of international security. In L. Davis, editor, Handbook of Genetic Algorithms, chapter 13, pages 166--185. Van Nostrand Reinhold, 1991.
  110. Forrest S., Mitchell M. Relative building-block fitness and the building-block hypothesis. In L.D. Whitley (Ed.), Foundations of genetic algorithms, 2 (pp. 109--126). San Mateo: Morgan Kaufmann.
  111. Forrest S., Mitchell M. The performance of genetic algorithms on Walsh polynomials: Some anomalous results and their explanation. Proceedings of the Fourth International Conference on Genetic Algorithms, 182--189.
  112. Forrest S., Mitchell M. Towards a stronger building-blocks hypothesis: Effects of relative building-block fitness on GA performance. In Foundations of Genetic Algorithms, volume 2, pages 109--126, Vail, Colorado, 1993. Morgan Kaufmann.
  113. Forrest S., Mitchell M. What makes a problem hard for a genetic algorithm? Some anomalous results and their explanation. Machine Learning, 13:285--319, 1993.
  114. Fourman M.P. Compaction of symbolic layout using genetic algorithms. In J.J. Grefenstette, editor, Proceedings of the First International Conference on Genetic Algorithms, pages 141--153. Lawrence Erlbaum Associates, 1985.
  115. Freund J.E., Walpole R.E. Mathematical statistics (3rd ed.). Englewood Cliffs, NJ: Prentice-Hall.
  116. Garey M. R., Johnson D.S. Computers and Intractibility: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York, 1979.
  117. Gevarter W.B. Artificial Intelligence, Expert Systems, Computer Vision and natural Language Processing. Noyes Publications, Park Ridge, NJ, 1984.
  118. Ginsberg M. Essentials of Artificial Intelligence. Morgan Kaufmann, San Mateo, CA, 1993.
  119. Giordana A., Saitta L., Zini F. Learning disjunctive concepts with distributed genetic algorithms. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 115--119.
  120. Goldberg D.E. A Wright-Brothers theory of genetic-algorithm flight. Journal of the Institute of Systems, Control, and Information Engineers, 37(8), 450--458.
  121. Goldberg D.E. A note on Boltzmann tournament selection for genetic algorithms and population-oriented simulated annealing. Complex Systems, 4, 445--460.
  122. Goldberg D.E. Alleles, loci, and the TSP. In J.J. Grefenstette, editor, Proceedings of the First International Conference on Genetic Algorithms, pages 154--159. Lawrence Erlbaum Associates, 1985.
  123. Goldberg D.E. Computer-aided gas pipeline operation using genetic algorithms and rule learning (Doctoral dissertation, University of Michigan). Dissertation Abstracts International, 44(10), 3174B. (University Microfilms No. 8402282)
  124. Goldberg D.E. Construction of high-order deceptive functions using low-order Walsh coefficients. Annals of Mathematics and Artificial Intelligence, 5(1), 35--48.
  125. Goldberg D.E. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA, 1989.
  126. Goldberg D.E. Genetic algorithms and Walsh functions: Part I a gentle introduction. Complex Systems, 3, 129--152.
  127. Goldberg D.E. Genetic algorithms and Walsh functions: Part II deception and its analysis. Complex Systems, 3, 153--171.
  128. Goldberg D.E. Genetic algorithms in search optimization and machine learning. Reading, MA: Addison-Wesley.
  129. Goldberg D.E. Making genetic algorithms fly: A lesson from the Wright Brothers. Advanced Technology for Developers, 2, 1--8.
  130. Goldberg D.E. Real-coded genetic algorithms virtual alphabets and blocking. Complex Systems, 5, 139--167.
  131. Goldberg D.E. Simple genetic algorithms and the minimal, deceptive problem. In L. Davis, editor, Genetic Algorithms and Simulated Annealing, chapter 6, pages 74--88. Pitman (Morgan Kaufmann), London, 1987.
  132. Goldberg D.E. Sizing populations for serial and parallel genetic algorithms. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 70--79. Morgan Kaufmann, 1989.
  133. Goldberg D.E. The Wright Brothers genetic algorithms and the design of complex systems. Proceedings of the Symposium on Neural-Networks; Alliances and Perspectives in Senri, 1--7.
  134. Goldberg D.E. The theory of virtual alphabets. Lecture Notes in Computer Science: Parallel Problem Solving from Nature, 496, 13--22.
  135. Goldberg D.E., Bridges C. L. An analysis of a reordering operator on a GA-hard problem. Biological Cybernetics, 62, 397--405.
  136. Goldberg D.E., Deb K. A comparative analysis of selection schemes used in genetic algorithms. In G.J.E. Rawlins, editor, Foundations of Genetic Algorithms, volume 1, pages 69--93, San Mateo, CA, 1991. Morgan Kaufmann.
  137. Goldberg D.E., Deb K., Clark J.H. Genetic algorithms noise and the sizing of populations. Complex Systems, 6, 333--362.
  138. Goldberg D.E., Deb K., Horn J. Massive multimodality deception and genetic algorithms. In R. Manner B. Manderick (Eds.), Parallel problem solving from nature, 2 (pp. 37--46). Amsterdam: Elsevier.
  139. Goldberg D.E., Deb K., Kargupta H., Harik G. Rapid accurate optimization of difficult problems using fast messy genetic algorithms. Proceedings of the Fifth International Conference on Genetic Algorithms, 56--64.
  140. Goldberg D.E., Deb K., Korb B. Don't worry, be messy. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 24--30, San Mateo, CA, 1991. Morgan Kaufmann.
  141. Goldberg D.E., Deb K., Korb B. Messy genetic algorithms revisited: Studies in mixed size and scale. Complex Systems, 4, 415--444.
  142. Goldberg D.E., Deb K., Thierens D. Toward a better understanding of mixing in genetic algorithms. Journal of the Society of Instrument and Control Engineers, 32(1), 10--16.
  143. Goldberg D.E., Korb B., Deb K. Messy genetic algorithms: Motivation, analysis and first results. Complex Systems, 3, 493--530.
  144. Goldberg D.E., Korb B., Deb K. Messy genetic algorithms: Motivation, analysis and first results. Complex Systems, 4:415--444, 1989.
  145. Goldberg D.E., Lingle R. Alleles, loci, and the traveling salesman problem. In J.J. Grefenstette, editor, Proceedings of an International Conference on Genetic Algorithms and their Applications, pages 154--159. Lawrence Erlbaum, Hillsdale, NJ, 24--26 July 1985.
  146. Goldberg D.E., Richardson J. Genetic algorithms with sharing for multimodal function optimization. Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, 41--49.
  147. Goldberg D.E., Rudnick M. Genetic algorithms and the variance of fitness. Complex Systems, 5, 265--278.
  148. Goldberg D.E., Segrest P. Finite Markov chain analysis of genetic algorithms. In J.J. Grefenstette, editor, Proceedings of the Second International Conference on Genetic Algorithms, pages 1--8. Lawrence Erlbaum, Hillsdale, NJ, 1987.
  149. Goldberg D.E., Smith R.E. Nonstationary function optimization using genetic algorithms with dominance and diploidy. Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, 59--68.
  150. Gonzalez A.J., Dankel D.D. The Engineering of Knowledge-Based Systems. Prentice Hall, Englewood Cliffs, NJ, 1993.
  151. Gorges-Schleuter M. ASPARAGOS: an asychronous parallel genetic optimization strategy. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 422--427. Morgan Kaufmann, 1989.
  152. Gorges-Schleuter M. Comparison of local mating strategies in massively parallel genetic algorithms. In R. Manner B. Manderick (Eds.), Parallel problem solving from nature, 2 (pp. 553--562). Amsterdam: Elsevier.
  153. Gorges-Schleuter M. Explicit parallelism of genetic algorithms through population structures. Lecture Notes in Computer Science: Parallel Problem Solving from Nature, 496, 150--159.
  154. Greene D.P., Smith S.F. Competition-based induction of decision models from examples. Machine Learning, 13(2/3), 229--257.
  155. Greene D.P., Smith S.F. Using coverage as a model building constraint in learning classifier systems. Evolutionary Computation, 2(1), 67--91.
  156. Greene F. A method for utilizing diploid/dominance in genetic search. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 439--444.
  157. Grefenstette J.J. Deception considered harmful. In L.D. Whitley, editor, Foundations of Genetic Algorithms, volume 2, pages 75--91, San Mateo, CA, 1993. Morgan Kaufmann.
  158. Grefenstette J.J. GENESIS: A system for using genetic search procedures. In Proceedings of the 1984 Conference on Intelligent Systems and Machines, pages 161--165, 1984.
  159. Grefenstette J.J. Genetic algorithms and their applications. In A. Kent and J.G. Williams, editors, Encyclopaedia of Computer Science and Technology, pages 139--152. Marcel Dekker, 1990.
  160. Grefenstette J.J. Genetic algorithms for changing environments. In R. Manner B. Manderick (Eds.), Parallel problem solving from nature, 2 (pp. 137--144). Amsterdam: Elsevier.
  161. Grefenstette J.J. Incorporating problem specific knowledge into genetic algorithms. In L. Davis, editor, Genetic Algorithms and Simulated Annealing, chapter 4, pages 42--60. Pitman, 1987.
  162. Grefenstette J.J. Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics, 16(1):122--128, Jan/Feb 1986.
  163. Grosso P.B. Computer simulation of genetic adaptation: Parallel subcomponent interaction in a multilocus model (Doctoral dissertation, University of Michigan). (University Microfilms No. 8520908)
  164. Hagen L. Kahng A.B. Combining problem reduction and adaptive multistart: A new technique for superior iterative partitioning. IEEE Transactions on Computer Aided Design, 1995. (to appear).
  165. Haldane J.B. A mathematical theory of natural and artificial selection, part viii: Metastable populations. Transactions of the Cambridge Philosophical Society, 27:137--142, 1931.
  166. Harary F., Norman R.Z., and Cartwright D. Structural Models: An Introduction to the Theory of Directed Graphs. John Wiley & Sons, New York, 1965.
  167. Harik G. Finding multiple solutions in problems of bounded difficulty (IlliGAL Report No. 94002). Urbana: University of Illinois, Illinois Genetic Algorithms Laboratory.
  168. Harp S.A., Samad T. Genetic synthesis of neural network architecture. In L. Davis, editor, Handbook of Genetic Algorithms, chapter 15, pages 202--221. Van Nostrand Reinhold, 1991.
  169. Hart P.E., Nilsson N.J, Raphael B. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100--107, 1968.
  170. Harvey I. The puzzle of the persistent question marks: A case study of genetic drift. Proceedings of the Fifth International Conference on Genetic Algorithms, 15--22.
  171. Hatjimihail A.T. Genetic algorithms-based design and optimization of statistical quality-control procedures. Clinical Chemistry, 39(9), 1972--1978.
  172. Helman P. An algebra for search problems and their solutions. In L. Kanal and V. Kumar, editors, Search in Artificial Intelligence, pages 28--90. Springer Verlag, New York, 1988.
  173. Hillis W.D. Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D, 42, 228--234.
  174. Hoare C.A. Quicksort. Computer Journal, 5(1):10--15, 1962.
  175. Holland J.H. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, 2nd edition, 1992.
  176. Holland J.H. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI, 1975.
  177. Holland J.H. Royal road functions. Internet Genetic Algorithms Digest v7n22. Available via ftp from ftp.santafe.edu in pub/terry/jhrr.tar.gz, Aug 12 1993.
  178. Holland J.H., Holyoak K.J, Nisbett R.E, Thagard P. Induction: Processes of Inference, Learning, and Discovery. MIT Press, 1986.
  179. Holland J.H., Reitman J.S. Cognitive systems based on adaptive algorithms. In D.A. Waterman F. Hayes-Roth (Eds.), Pattern-directed inference systems (pp. 313-329). New York: Academic Press.
  180. Hollstien R.B. Artificial genetic adaptation in computer control systems (Doctoral dissertation, University of Michigan). Dissertation Abstracts International, 32(3), 1510B. (University Microfilms No. 71-23773)
  181. Holte R.C. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63--90.
  182. Homaifar A., Guan S., Liepins G.E. A new approach on the traveling salesman problem by genetic algorithms. Proceedings of the Fifth International Conference on Genetic Algorithms, 460--466.
  183. Homaifar A., Qi X., Fost J. Analysis and design of a general GA deceptive problem. Proceedings of the Fourth International Conference on Genetic Algorithms, 196-203.
  184. Hopfield J.J., Tank D. Neural computation of decisions in optimization problems. Biological Cybernetics, 52:141--152, 1985.
  185. Horn J. Finite Markov chain analysis of genetic algorithms with niching. Proceedings of the Fifth International Conference on Genetic Algorithms, 110--117. Horn, J., Goldberg, D.E. (in press). Genetic algorithm difficulty and the modality of fitness landscapes. In L.D. Whitley (Ed.), Foundations of genetic algorithms, 3. San Mateo: Morgan Kaufmann.
  186. Horn J., Goldberg D.E. Genetic algorithm difficulty and the modality of fitness landscapes. In L.D. Whitley and M.D. Vose, editors, Foundations of Genetic Algorithms, volume 3, San Mateo, CA, 1995. Morgan Kaufmann. (To appear).
  187. Horn J., Goldberg D.E., Deb K. Implicit niching in a learning classifier system: Nature's way. Evolutionary Computation, 2(1), 37--66.
  188. Horn J., Goldberg D.E., Deb K. Long path problems. In Y. Davidor, H.-P. Schwefel, and R. Manner, editors, Parallel Problem Solving From Nature -- PPSN III, volume 866 of Lecture Notes in Computer Science, pages 149--158, Berlin, 1994. Springer-Verlag.
  189. Horn J., Nafpliotis N. Multiobjective optimization using the niched Pareto genetic algorithm (IlliGAL Report No. 93005). Urbana: University of Illinois, Illinois Genetic Algorithms Laboratory.
  190. Horn J., Nafpliotis N., Goldberg D.E. A niched Pareto genetic algorithm for multiobjective optimization. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 82--87.
  191. Horner A., Goldberg D.E. Genetic algorithms and computer-assisted music composition. Proceedings of the Fourth International Conference on Genetic Algorithms, 437-441.
  192. Hunt K.J. Polynimial LQG and h1 controller synthesis: a genetic algorithm aolution. In Proc. IEEE Conf. Decision and Control, pages --, 1992.
  193. Husbands P., Mill F. Simulated co-evolution as the mechanism for emergent planning and scheduling. Proceedings of the Fourth International Conference on Genetic Algorithms, 264--270.
  194. Huxley J. Evolution, The Modern Synthesis. Allen and Unwin, London, 1942.
  195. Huynen M. Evolutionary Dynamics and Pattern Generation in the Sequence and Secondary Structure of RNA: A Bioinformatic Approach. PhD thesis, University of Utrecht, Netherlands, September 1993.
  196. Johnson D.S., Aragon C.R., McGeoch L.A., Schevon C. Optimization by simulated annealing: An experimental evaluation; Part II, graph coloring and number partitioning. Operations Research, 39(3):378--406, 1991.
  197. Jones T. (in press). Crossover macromutation and population-based search. Proceedings of the Sixth International Conference on Genetic Algorithms.
  198. Jones T.C. A description of Holland's royal road function. Evolutionary Computation, 2(4):411--417, 1995.
  199. Jones T.C., Forrest S. Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In L.J. Eshelman, editor, Proceedings of the Sixth International Conference on Genetic Algorithms, 1995. (to appear).
  200. Jones T.C., Forrest S. Genetic algorithms and heuristic search. Technical Report 95--02--021, Santa Fe Institute, Santa Fe, NM, February 1995. Available via ftp from ftp.santafe.edu in pub/terry/gahs.ps.gz.
  201. Jones T.C., Rawlins G.J.E. Reverse hillclimbing, genetic algorithms and the busy beaver problem. In S. Forrest, editor, Genetic Algorithms: Proceedings of the Fifth International Conference (ICGA 1993), pages 70--75, San Mateo, CA, 1993. Morgan Kaufmann.
  202. Juliff K. Using a multi chromosome genetic algorithm to pack a truck. Technical Report RMIT CS TR 92-2, Royal Melbourne Institute of Technology, August 1992.
  203. Kanerva P. Sparse Distributed Memory. Bradford Books, MIT Press, Cambridge MA, 1988.
  204. Kapur J.N., Kesavan H.K. The generalized maximum entropy principle (with applications). Sandford Educational Press.
  205. Kargupta H. Drift diffusion and Boltzmann distribution in simple genetic algorithm. Proceedings of the Workshop on Physics and Computation, 137--145. Los Alamitos, CA: IEEE Computer Society Press.
  206. Kargupta H. Signal-to-noise, crosstalk, and long range problem difficulty in genetic algorithms. In L.J. Eshelman, editor, Proceedings of the Sixth International Conference on Genetic Algorithms, San Mateo, CA, 1995. Morgan Kaufmann.
  207. Kargupta H., Deb K., Goldberg D.E. Ordering genetic algorithms and deception. In R. Manner B. Manderick (Eds.), Parallel problem solving from nature, 2 (pp. 47--56). Amsterdam: Elsevier.
  208. Kargupta H., Goldberg D.E. Decision making in genetic algorithms: A signalto-noise perspective (IlliGAL Report No. 94004). Urbana: University of Illinois, Illinois Genetic Algorithms Laboratory.
  209. Kargupta H., Smith R.E. System identification with evolving polynomial networks. Proceedings of the Fourth International Conference on Genetic Algorithms, 370--376.
  210. Karmarkar N., Karp R.M. The differencing method of set partitioning. Technical Report UCB/CSD 82/113, University of California, Berkeley, Berkeley, CA, 1982.
  211. Karp R. M. Reducibility among combinatorial problems. In R.E. Miller and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85--103. Plenum Press, New York, 1972.
  212. Karr C. L. Air-injected hydrocyclone optimization via genetic algorithm. In L. Davis (Ed.), Handbook of genetic algorithms (pp. 222--236). New York: Van Nostrand Reinhold.
  213. Karr C. L. Design of an adaptive fuzzy logic controller using a genetic algorithm. Proceedings of the Fourth International Conference on Genetic Algorithms, 450--457.
  214. Kauffman S.A. Adaptation on rugged fitness landscapes. In D. Stein, editor, Lectures in the Sciences of Complexity, volume 1, pages 527--618. AddisonWesley Longman, 1989.
  215. Kauffman S.A. The Origins of Order; Self-Organization and Selection in Evolution. Oxford University Press, New York, 1993.
  216. Kinnear Jr K.E. Fitness landscapes and difficulty in genetic programming. In Proceedings of the First IEEE Conference on Evolutionary Computing, pages 142--47, 1994.
  217. Kinnear K.E. Jr., editor. Advances in Genetic Programming, Cambridge, MA, 1994. MIT Press.
  218. Kinnear K.E., Jr. Fitness landscapes and difficulty in genetic programming. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 142--147.
  219. Kirkpatrick S. Optimization by simulated annealing: Quantitative studies. Journal of Statistical Physics, 34:975--986, 1984.
  220. Kirpatrick S., Gelatt C.D., Jr., Vecchi M.P. Optimization by simulated annealing. Science, 220(4598), 671--680.
  221. Knuth D.E. The Art of Computer Programming, volume 2 : Sorting and Searching. Addison-Wesley, Reading, MA, 2nd edition, 1980.
  222. Korf R.E. Macro-Operators: A weak method for learning. Artificial Intelligence, 26:35--77, 1985.
  223. Koza J.R. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge, MA, 1994.
  224. Koza J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, 1992.
  225. Krishnakumar K. Micro-genetic algorithms for stationary and non-stationary function optimization. SPIE Proceedings: Intelligent Control and Adaptive Systems, 1196, 289--296.
  226. Krishnakumar, K., Goldberg D.E. Genetic algorithms in control system optimization. In AIAA Guidance, Navigation, Control Conf., pages 1568--1577, 1990.
  227. Kursawe F. A variant of evolution strategies for vector optimization. Lecture Notes in Computer Science: Parallel Problem Solving from Nature, 496, 193--197.
  228. Laine P., Kuuskankare M. Genetic algorithms in musical style oriented generation. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 858--862.
  229. Lande R. Natural selection and random genetic drift in phenotype evolution. Evolution, 30:314--334, 1976.
  230. Lane D. November 1994. Personal communication.
  231. Langton C.G. (Ed.). Artificial life. Redwood City CA: Addison-Wesley.
  232. Langton C.G. Artificial life. In C.G. Langton, editor, Artificial Life, volume 1, pages 1-47, Santa Fe, NM, 1989. Santa Fe Institute Studies in the Sciences of Complexity., Addison-Wesley.
  233. Langton C.G., Taylor C., Farmer J.D., Rasmussen S. (Eds.). Artificial life II. Redwood City, CA: Addison-Wesley.
  234. Lauriere J.-L. A language and a program for stating and solving combinatorial problems. Artificial Intelligence, 10:29--127, 1978.
  235. Levenick J. R. Inserting introns improves genetic algorithm success rate: Taking a cue from biology. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 123--127, San Mateo, CA, 1991. Morgan Kaufmann.
  236. Lial M. L., Miller C.D. Finite mathematics (4th ed.). Glenview IL: Scott, Foresman.
  237. Liepins G., Vose M.D. Deceptiveness and genetic algorithm dynamics. In G.J.E. Rawlins, editor, Foundations of Genetic Algorithms, volume 1, pages 36--50, San Mateo, CA, 1991. Morgan Kaufmann.
  238. Liepins G., Vose M.D. Representational issues in genetic optimization. Journal of Experimental and Theoretical Artificial Intelligence, 2:101--115, 1990.
  239. Liepins, G.E., Hilliard M.R., Palmer M., Morrow M. Greedy genetics. In J.J. Grefenstette, editor, Proceedings of the Second International Conference on Genetic Algorithms, pages 90--99. Lawrence Erlbaum Associates, 1987.
  240. Lin S. Kernighan B.W. An effective heuristic algorithm for the travelingsalesman problem. Operations Research, 31:498--516, 1973.
  241. Louis S.J., Rawlins G.J.E. Syntactic analysis of convergence in genetic algorithms. In L.D. Whitley (Ed.), Foundations of genetic algorithms, 2 (pp. 141--151). San Mateo: Morgan Kaufmann.
  242. Lowerre B.T., Reddy R.D. The Harpy speech understanding system. In W.A. Lea, editor, Trends in Speech Recognition. Prentice Hall, Englewood Cliffs, NJ, 1980.
  243. Loyd S. Mathematical Puzzles of Sam Loyd. Dover, new York, 1959.
  244. Luger G.F. Stubblefield A. Artificial Intelligence and the Design of Expert Systems. Benjamin/Cummins, Redwood City CA, 2nd edition, 1993.
  245. Mahfoud S. W. An analysis of Boltzmann tournament selection: Part II: An experimental analysis of Boltzmann tournament selection (IlliGAL Report No. 94007). Urbana: University of Illinois, Illinois Genetic Algorithms Laboratory.
  246. Mahfoud S. W. Crossover interactions among niches. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 188--193.
  247. Mahfoud S. W. Crowding and preselection revisited. In R. Manner B. Manderick (Eds.), Parallel problem solving from nature, 2 (pp. 27--36). Amsterdam: Elsevier.
  248. Mahfoud S. W. Finite Markov chain models of an alternative selection strategy for the genetic algorithm. Complex Systems, 7(2):155--170, April 1993.
  249. Mahfoud S. W., Goldberg D.E. A genetic algorithm for parallel simulated annealing. In R. Manner B. Manderick (Eds.), Parallel problem solving from nature, 2 (pp. 301--310). Amsterdam: Elsevier.
  250. Mahfoud S. W., Goldberg D.E. Parallel recombinative simulated annealing: A genetic algorithm. Parallel Computing, 21, 1--28.
  251. Mahfoud S. W., Mani G. Genetic algorithms for predicting individual stock performance. Proceedings of the Third International Conference on Artificial Intelligence Applications on Wall Street.
  252. Manderick B., De Weger M., Spiessens P. The genetic algorithm and the structure of the fitness landscape. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 143--150, San Mateo, CA, 1991. Morgan Kaufmann.
  253. Manderick B., Spiessens P. Fine-grained parallel genetic algorithms. Proceedings of the Third International Conference on Genetic Algorithms, 428--433.
  254. Marxen H., Buntrock J. Attacking the busy beaver 5. Bulletin of The European Association for Theoretical Computer Science, 40:247--251, 1990.
  255. Mason A.J. Partition coefficients static deception and deceptive problems for nonbinary alphabets. Proceedings of the Fourth International Conference on Genetic Algorithms, 210--214.
  256. Mathias K., Whitley L.D. Genetic operators, the fitness landscape and the traveling salesman problem. In R. Manner and B. Manderick, editors, Parallel Problem Solving From Nature, volume 2, pages 219--228, Amsterdam, The Netherlands, 1992. Elsevier Science Publishers B.V.
  257. Mathias K., Whitley L.D. Remapping hyperspace during genetic search: Canonical delta folding. In L.D. Whitley (Ed.), Foundations of genetic algorithms, 2 (pp. 167--186). San Mateo: Morgan Kaufmann.
  258. Mauldin M. L. Maintaining diversity in genetic search. Proceedings of the National Conference on Artificial Intelligence, 247--250.
  259. Mayr E. The Growth of Biological Thought. Harvard University Press, Cambridge, MA, 1982.
  260. Mc Intyre R.A. Bach in a box: The evolution of four part baroque harmony using the genetic algorithm. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 852--857.
  261. Merkle L.D., Lamont G.B. Comparison of parallel messy genetic algorithm data distribution strategies. Proceedings of the Fifth International Conference on Genetic Algorithms, 191--198.
  262. Metropolis N., Rosenbluth A. W., Rosenbluth M.N., Teller A.H., Teller, E. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087--1092.
  263. Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, New York, 2nd edition, 1994.
  264. Minsky M. Steps toward artificial intelligence. In E.A. Feigenbaum and J. Friedman, editors, Computers and Thought, pages 406--450. McGraw-Hill, 1963. This originally appeared in Proc, IRE , vol. 49, pp. 8--30, 1961.
  265. Mitchell M. An Introduction to Genetic Algorithm. MIT Press, Cambridge, MA, 1996.
  266. Mitchell M. Forrest S., and Holland J.H. The royal road for genetic algorithms: Fitness landscapes and GA performance. In F.J. Varela and P. Bourgine, editors, Proceedings of the First European Conference on Artificial Life. Toward a Practice of Autonomous Systems, pages 245--254, Cambridge, MA, 11--13 Dec 1992. MIT Press.
  267. Moscato P., Norman M.G. A ``memetic'' approach for the travelling sales- man problem---implementation of a computational ecology for combinatorial optimisation on message-passing systems. In Proceedings of the International Conference on Parallel Computing and Transputer Applications, Amsterdam, 1992. IOS Press.
  268. Muhlenbein H. Evolution in time and space -- The parallel genetic algorithm. In G.J.E. Rawlins, editor, Foundations of Genetic Algorithms, volume 1, pages 316--337, San Mateo, CA, 1991. Morgan Kaufmann.
  269. Muhlenbein H. How genetic algorithms really work I: Mutation and hillclimbing. In R. Manner B. Manderick (Eds.), Parallel problem solving from nature, 2 (pp. 15--25). Amsterdam: Elsevier.
  270. Muhlenbein H. Parallel genetic algorithms population genetics and combinatorial optimization. Proceedings of the Third International Conference on Genetic Algorithms, 416--421.
  271. Muhlenbein H., Gorges-Schleuter M., Kramer O. Evolution algorithms in combinatorial optimization. Parallel Computing, 7, 65--85.
  272. Muhlenbein H., Schomisch M., Born J. The parallel genetic algorithm as function optimizer. Parallel Computing, 17, 619--632.
  273. Muhlenbein H., Schomisch M., Born J. The parallel genetic algorithm as function optimizer. Proceedings of the Fourth International Conference on Genetic Algorithms, 271-278.
  274. Nakano R., Yamada T. Conventional genetic algorithm for job shop problems. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 474--479, San Mateo, CA, 1991. Morgan Kaufmann.
  275. Nilsson N.J. Principles of Artificial Intelligence. Tioga Publishing Co., Palo Alto, CA, 1980.
  276. Nilsson N.J. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, 1971.
  277. Nilsson N.J., Rumelhart D. Approaches to Artificial Intelligence. Technical Report 93--08--052, Santa Fe Institute, Santa Fe, NM, 1993. Summary of workshop held November 6--9, 1992. Available via ftp from ftp.santafe.edu in pub/Users/mm/approaches/approaches.ps.
  278. Nix A.E., Vose M.D. Modeling genetic algorithms with Markov chains. Annals of Mathematics and Artificial Intelligence, 5:79--88, 1992.
  279. Noyes J. L. Artificial Intelligence with Common Lisp.D.C. Heath, Lexington, MA, 1992.
  280. O'Reilly U.-M., Oppacher F. Hybridized crossover-based search techniques for program discovery. Technical Report 95--02--007, Santa Fe Institute, Santa Fe, NM, February 1995.
  281. O'Reilly U.-M., Oppacher F. Program search with a hierarchical variable length representation: Genetic programming, simulated annealing and hill climbing. In Y. Davidor, H.-P. Schwefel, and R. Manner, editors, Parallel Problem Solving From Nature -- PPSN III, volume 866 of Lecture Notes in Computer Science, pages 397--406, Berlin, 1994. Springer-Verlag.
  282. Oei C.K., Goldberg D.E., Chang S.J. Tournament selection niching and the preservation of diversity (IlliGAL Report No. 91011). Urbana: University of Illinois, Illinois Genetic Algorithms Laboratory.
  283. Oliver I. M., Smith D.J., Holland J. R.C. A study of permutation crossover operators on the traveling salesman problem. In J.J. Grefenstette, editor, Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, pages 224--230, Hillsdale, NJ, 1987. Lawrence Erlbaum.
  284. Orponen P., Ko K.-I., Schoning U., Watanabe O. Instance complexity. Journal of the Association for Computing Machinery, 41(1):96--121, January 1994.
  285. Orvosh D., Davis L. Shall we repair? Genetic algorithms, combinatorial optimization and feasibility constraints. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, page 650, San Mateo, CA, 1993. Morgan Kaufmann.
  286. Orvosh D., Davis L. Using a genetic algorithm to optimize problems with feasibility constraints. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 548--553.
  287. P'al K.F. Selection schemes with spatial isolation for genetic optimization. Lecture Notes in Computer Science: Parallel Problem Solving from Nature --- PPSN III, 866, 170--179.
  288. Packard N.H. A genetic learning algorithm for the analysis of complex data. Complex Systems, 4(5), 543--572.
  289. Padberg M., Rinaldi G. Optimization of a 532-city symmetric traveling salesman problem by branch and cut. Operations Research Letters, 6:1--7, 1987.
  290. Palmer R.G. July 1992. Personal communication.
  291. Palmer R.G., Pond C.M. Internal field distributions in model spin glasses. Journal of Physics F, 9(7):1451--1459, 1979.
  292. Parsons R., Forrest S., Burks C. Genetic operators for the DNA fragment assembly problem. Machine Learning, 1995. (in press).
  293. Partridge D. A New Guide to Artificial Intelligence. Ablex Publishing Co., Norwood, NJ, 1991.
  294. Patterson D. W. Introduction to Artificial Intelligence and Expert Systems. Prentice Hall, Englewood Cliffs, NJ, 1990.
  295. Pearl J. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, Reading, MA, 1984.
  296. Perry Z.A. Experimental study of speciation in ecological niche theory using genetic algorithms (Doctoral dissertation, University of Michigan). Dissertation Abstracts International, 45 (12), 3870B. (University Microfilms No. 8502912)
  297. Pettey C.B., Leuze M. R., Grefenstette J.J. A parallel genetic algorithm. Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, 155--161.
  298. Pohl I. Bi-Directional search. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 6, pages 127--140, New York, 1971. American Elsevier.
  299. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical recipes in C: The art of scientific computing (2nd ed.). Port Chester, NY: Cambridge University Press.
  300. Provine W.B. Sewall Wright and Evolutionary Biology. University of Chicago Press, Chicago, IL, 1986.
  301. Radcliffe N.J. Equivalence class analysis of genetic algorithms. Complex Systems, 5(2), 183--205.
  302. Radcliffe N.J. Forma analysis and random respectful recombination. Proceedings of the Fourth International Conference on Genetic Algorithms, 222--229.
  303. Radcliffe N.J. Genetic set recombination. In L.D. Whitley (Ed.) Foundations of genetic algorithms, 2 (pp. 203--219). San Mateo: Morgan Kaufmann.
  304. Radcliffe N.J., Surry P.D. Fitness variance of formae and performance prediction. In L.D. Whitley and M.D. Vose, editors, Foundations of Genetic Algorithms, volume 3, San Mateo, CA, 1995. Morgan Kaufmann.
  305. Rado T. On non-computable functions. Bell System Technical Journal, 41:877--884, 1962.
  306. Rawlins G.J. Introduction. In G.J.E. Rawlins, editor, Foundations of Genetic Algorithms, volume 1, pages 1--10. Morgan Kaufmann, San Mateo, CA, 1991.
  307. Rechenberg I. Evolutionsstrategie: Optimierung Techniquer Systeme nach Prinzipien der Biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart, 1973.
  308. Rich E. Artificial Intelligence. McGraw-Hill, New York, 1983.
  309. Richardson J.T., Palmer M.R., Liepins G.E., Hilliard M.R. Some guidlines for genetic algorithms with penalty functions. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 191--197, San Mateo, CA, June 4--7 1989. Morgan Kaufmann.
  310. Romeo F., Sangiovanni-Vincentelli A. A theoretical framework for simulated annealing. Algorithmica, 6, 302--345.
  311. Rudnick M., Goldberg D.E. Signal noise and genetic algorithms (IlliGAL Report No. 91005). Urbana: University of Illinois, Illinois Genetic Algorithms Laboratory.
  312. Rudolph G. Convergence analysis of conventional genetic algorithms. IEEE Transactions on Neural Networks, 5(1):96--101, Jan 1994. Special Issue on Evolutionary Computation.
  313. Ruml W., Ngo J.T., Marks J., Shieber S. Easily searched encodings for number partitioning. Journal of Optimization Theory and Applications, 1995. (to appear).
  314. Rutenbar R.A Simulated annealing algorithms: An overview. IEEE Circuits and Devices Magazine, pages 19--26, January 1989.
  315. Sannier A.V., II Goodman E.D. Genetic learning procedures in distributed environments. Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, 162--169.
  316. Schaffer J.D. Multiple objective optimization with vector evaluated genetic algorithms. Proceedings of an International Conference on Genetic Algorithms and Their Applications, 93--100.
  317. Schaffer J.D. Some experiments in machine learning using vector evaluated genetic algorithms. Unpublished doctoral dissertation, Vanderbilt University, Nashville.
  318. Schaffer J.D., Caruana R.A., Eshelman L.J., Das R. A study of control parameters affecting online performance of genetic algorithms for function optimization. Proceedings of the Third International Conference on Genetic Algorithms, 51--60.
  319. Schaffer J.D., Eshelman L.J., Offutt D. Spurious correlations and premature convergence in genetic algorithms. In G.J.E. Rawlins, editor, Foundations of Genetic Algorithms, volume 1, pages 102--112, San Mateo, CA, 1991. Morgan Kaufmann.
  320. Schalkoff R.J. Artificial Intelligence: An Engineering Approach. McGraw-Hill, New York, 1990.
  321. Schraudolph N.N., Belew R.K. Dynamic parameter encoding for genetic algorithms. Machine Learning, 9(1):9--21, June 1992.
  322. Schultz A.C., Grefenstette J.J. Improving tactical plans with genetic algorithms. In Proc. IEEE Conf. Tools for AI, pages 328--344. IEEE Society Press, 1990.
  323. Schuster P., Stadler P.F. Landscapes: Complex optimization problems and biopolymer structures. Computers Chem., 18:295--314, 1994.
  324. Schwefel H.-P. Numerische optimierung von computer-modellen mittels der evolutionsstrategie. Interdisciplinary systems research, 26, 1977. Birkhauser, Basel.
  325. Schwehm M. Implementation of genetic algorithms on various interconnection networks. In M. Valero, E. O~nate, M. Jane, J. L. Larriba, B. Su'arez (Eds.), Parallel computing and transputer applications (pp. 195--203). Barcelona: IOS Press.
  326. Scown S.J. The Artificial Intelligence Experience: An Introduction. Digital Equipment Corporation, 1985.
  327. Sedbrook T.A., Wright H., Wright R. Application of a genetic classifier for patient triage. Proceedings of the Fourth International Conference on Genetic Algorithms, 334--338.
  328. Shaefer C.G. The ARGOT strategy: Adaptive representation genetic optimizer technique. In J.J. Grefenstette, editor, Proceedings of the Second International Conference on Genetic Algorithms, pages 50--55, Hillsdale NJ, 1987. Lawrence Erlbaum Associates.
  329. Sherrington D. Kirkpatrick S. Solvable model of a spin glass. Physical Review Letters, 32:1792--1796, 1975.
  330. Shiple T., Kollaritsch P., Smith D.J., Allen J. Area evaluation metrics for transistor placement. In Proceedings of the IEEE International Conference on Computer Design: VLSI Computers and Processors, pages 428--433, Washington, DC, October 1988. Computer Society of the IEEE.
  331. Shorrocks B. The genesis of diversity. Baltimore: University Park Press. Sikora, R., Shaw, M.J. A double-layered learning approach to acquiring rules for classification: Integrating genetic algorithms with similarity-based learning. ORSA Journal on Computing, 6(2), 174--187.
  332. Siedlecki W., Sklansky J. Constrained genetic optimization via dynamic reward-penalty balancing and its use in pattern recognition. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 141--150, San Mateo, CA, June 4--7 1989. Morgan Kaufmann.
  333. Simpson G.G. Tempo and Mode in Evolution. Columbia University Press, New York, 1944.
  334. Sirag D.J., Weisser P.T. Toward a unified thermodynamic genetic operator. Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, 116--122.
  335. Slagle J. A computer program for solving problems in freshman calculus (SAINT). Journal of the Association for Computing Machinery, 10(4):507-520, 1963. This also appears in E.A. Feigenbaum and J. Friedman (Eds.) Computers and Thought pp. 191--203. McGraw-Hill, New York, 1963.
  336. Smith D.J. February 1995. Personal communication.
  337. Smith R.E. Adaptively resizing populations: An algorithm and analysis. Proceedings of the Fifth International Conference on Genetic Algorithms, 653.
  338. Smith R.E. An investigation of diploid genetic algorithms for adaptive search of nonstationary functions (Masters thesis and TCGA Report No. 88001). Tuscaloosa: University of Alabama, The Clearinghouse for Genetic Algorithms.
  339. Smith R.E., Forrest S., Perelson A.S. Population diversity in an immune system model: Implications for genetic search. In L.D. Whitley (Ed.), Foundations of genetic algorithms, 2 (pp. 153--165). San Mateo: Morgan Kaufmann.
  340. Smith R.E., Forrest S., Perelson A.S. Searching for diverse cooperative populations with genetic algorithms. Evolutionary Computation, 1(2), 127--149.
  341. Smith R.E., Goldberg D.E. Diploidy and dominance in artificial genetic search. Complex Systems, 6, 251--285.
  342. Smith R.E., Valenzuela-Rend'on M. A study of rule set development in a learning classifier system. Proceedings of the Third International Conference on Genetic Algorithms, 340--346.
  343. Spears W. M. Crossover or mutation? In L.D. Whitley, editor, Foundations of Genetic Algorithms, volume 2, pages 221--237, San Mateo, CA, 1993. Morgan Kaufmann.
  344. Spears W. M. Simple subpopulation schemes. Proceedings of the Third Annual Conference on Evolutionary Programming, 296--307.
  345. Spiessens P., Manderick B. A massively parallel genetic algorithm. Proceedings of the Fourth International Conference on Genetic Algorithms, 279--286.
  346. Srinivas M., Patnaik L. M. Binomially distributed populations for modelling GAs. Proceedings of the Fifth International Conference on Genetic Algorithms, 138--145.
  347. Stadler P.F. , Gruner W. Anisotropy in fitness landscapes. Journal of Theoretical Biology, 165:373--388, 1993.
  348. Stadler P.F. Linear operators on correlated landscapes.J. Physique, 4:681-696, 1994.
  349. Stadler P.F., Schnabl W. The landscape of the traveling salesman problem. Physics Letters A, 161:337--344, 1992.
  350. Stadnyk I. Schema recombination in a pattern recognition problem. Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, 27--35.
  351. Starkweather T., McDaniel S., Mathias K., Whitley L.D. A comparison of genetic sequencing operators. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 69--76, San Mateo, CA, 1991. Morgan Kaufmann.
  352. Suzuki J. A Markov chain analysis on a genetic algorithm. In S. Forrest, editor, Genetic Algorithms: Proceedings of the Fifth International Conference (ICGA 1993), pages 146--153, San Mateo, CA, 1993. Morgan Kaufmann.
  353. Syswerda G. A study of reproduction in generational and steady-state genetic algorithms. In G.J.E. Rawlins (Ed.), Foundations of genetic algorithms (pp. 94--101). San Mateo: Morgan Kaufmann.
  354. Syswerda G. Schedule optimization using genetic algorithms. In L. Davis, editor, Handbook of Genetic Algorithms, chapter 21, pages 332--349. Van Nostrand Reinhold, 1991.
  355. Syswerda G. Uniform crossover in genetic algorithms. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 2--9. Morgan Kaufmann, 1989.
  356. Tackett W.A. Greedy recombination and genetic search on the space of computer programs. In L.D. Whitley and M.D. Vose, editors, Foundations of Genetic Algorithms, volume 3, San Mateo, CA, 1995. Morgan Kaufmann. (To appear).
  357. Tackett W.A. Recombination, Selection, and the Genetic Construction of Computer Programs. PhD thesis, University of Southern California, Los Angeles, CA, April 1994.
  358. Tanese R. Distributed Genetic Algorithms for Function Optimization. PhD thesis, University of Michigan, Ann Arbor, MI, 1989.
  359. Tanese R. Distributed Genetic Algorithms. Proceedings of the Third International Conference on Genetic Algorithms, 434--439.
  360. Tanese R. Parallel genetic algorithm for a hypercube. Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, 177--183.
  361. Tanimoto S. L. The Elements of Artificial Intelligence. W.H. Freeman and Co., New York, 1990.
  362. Thierens D., Goldberg D.E. Mixing in genetic algorithms. Proceedings of the Fifth International Conference on Genetic Algorithms, 38--45.
  363. Todd P. M., Miller G.F. On the sympatric origin of species: Mercurial mating in the quicksilver model. Proceedings of the Fourth International Conference on Genetic Algorithms, 547--554.
  364. Varela F.J., Bourgine P. (Eds.). Toward a practice of autonomous systems: Proceedings of the First European Conference on Artificial Life. Cambridge, MA: MIT Press.
  365. Vose M.D. July 1994. Personal communication.
  366. Vose M.D. Modeling simple genetic algorithms. In L.D. Whitley, editor, Foundations of Genetic Algorithms, volume 2, pages 63--73, San Mateo, CA, 1993. Morgan Kaufmann.
  367. Wagner G. January 1995. Personal communication.
  368. Weinberger E.D. Correlated and uncorrelated fitness landscapes and how to tell the difference. Biological Cybernetics, 63:325--336, 1990.
  369. Weinberger E.D. Fourier and taylor series on fitness landscapes. Biological Cybernetics, 65:321--330, 1990.
  370. Weinberger E.D. Local properties of Kauffman's N-k model: A tunably rugged energy landscape. Physical Review A, 44(10):6399--6413, November 1991.
  371. Weinberger E.D. Measuring correlations in energy landscapes and why it matters. In H. Atmanspacher and H. Scheingraber, editors, Information Dynamics, pages 185--193. Plenum Press, New York, 1991.
  372. Whitley D. An executable model of a simple genetic algorithm. In L.D. Whitley (Ed.), Foundations of genetic algorithms, 2 (pp. 45--62). San Mateo: Morgan Kaufmann.
  373. Whitley D. The GENITOR algorithm and selection pressure: why rank-based allocation of repro- ductive trials is best. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 116--121. Morgan Kaufmann, 1989.
  374. Whitley D. Using reproductive evaluation to improve genetic search and heuristic discovery. In J.J. Grefenstette, editor, Proceedings of the Second International Conference on Genetic Algorithms, pages 108--115. Lawrence Erlbaum Associates, 1987.
  375. Whitley D., Hanson T. Optimizing neural networks using faster more accurate genetic search. Proceedings of the Third International Conference on Genetic Algorithms, 391--396.
  376. Whitley D., Kauth J. GENITOR: A different genetic algorithm. Proceedings of the Rocky Mountain Conference on Artificial Intelligence, 118--130.
  377. Whitley D., Mathias K., Fitzhorn P. Delta coding: An iterative search strategy for genetic algorithms. Proceedings of the Fourth International Conference on Genetic Algorithms, 77--84.
  378. Whitley D., Starkweather T. GENITOR II: A distributed genetic algorithm. Journal of Experimental and Theoretical Artificial Intelligence, 2, 189--214.
  379. Whitley D., Starkweather T., Bogart C. Genetic Algorithms and neural networks: Optimizing connections and connectivity. Parallel Computing, 14, 347--361.
  380. Whitley D., Starkweather T., Fuquay D. Scheduling problems and travelling salesmen: The genetic edge recombination operator. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 133--140. Morgan Kaufmann, 1989.
  381. Whitley L.D. Fundamental principles of deception in genetic search. In G.J.E. Rawlins, editor, Foundations of Genetic Algorithms, volume 1, pages 221--241, San Mateo, CA, 1991. Morgan Kaufmann.
  382. Whitley L.D. Introduction. In L.D. Whitley, editor, Foundations of Genetic Algorithms, volume 2, pages 1--4, San Mateo, CA, 1993. Morgan Kaufmann.
  383. Whitley L.D. July 1994. Personal communication.
  384. Whitley L.D. The GENITOR algorithm and selection pressure: Why rankbased allocation of reproductive trials is best. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 116--121, San Mateo, CA, June 4--7 1989. Morgan Kaufmann.
  385. Whitley L.D., Mathias K., Fitzhorn P. Delta coding: An iterative search strategy for genetic algorithms. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 77--84, San Mateo, CA, 1991. Morgan Kaufmann.
  386. Whitley L.D., Starkweather T., D'Ann F. Scheduling problems and traveling salesmen: The genetic edge recombination operator. In J.D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 133--140, San Mateo, CA, June 4--7 1989. Morgan Kaufmann.
  387. Whitley L.D., Yoo N.-W. Modeling simple genetic algorithms for permutation problems. In L.D. Whitley and M.D. Vose, editors, Foundations of Genetic Algorithms, volume 3, San Mateo, CA, 1995. Morgan Kaufmann.
  388. Winston P.H. Artificial Intelligence. Addison-Wesley, Reading, MA, 3 edition, 1992.
  389. Wright S. Evolution in Mendelian populations. Genetics, 16:97--159, 1931.
  390. Wright S. Surfaces of selective value revisited. American Naturalist, 131(1):115--123, 1988.
  391. Wright S. The distribution of gene frequencies in populations. In Proceedings of the National Academy of Science, volume 23, pages 307--320, 1937.
  392. Wright S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. In Proceedings of the sixth international congress of genetics, volume 1, pages 356--366, 1932.
  393. Yin X. Investigations on the application of genetic algorithms to the load flow problem in electrical power systems. Unpublished doctoral dissertation, Universit'e Catholique de Louvain, Belgium.
  394. Yin X., Germay N. A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization. In R.F. Albrecht, C.R. Reeves, N.C. Steele (Eds.), Artificial neural nets and genetic algorithms: Proceedings of the international conference in Innsbruck (pp. 450--457). Berlin: Springer-Verlag.
.


e-mail: saisa@mail.ru
web: http://saisa.chat.ru